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Abstract
In this paper we consider the classical relativistic motion of charged particles
in a knotted electromagnetic field. After reviewing how to construct
electromagnetic knots from maps between the three-sphere and the two-sphere,
we introduce a mean quadratic radius of the energy density distribution in order
to study some properties of this field. We study the classical relativistic motion
of electrons in the electromagnetic field of the Hopf map, and compute their
trajectories. It is observed that these electrons initially at rest are strongly
accelerated by the electromagnetic force, becoming ultrarelativistic in a period
of time that depends on the knot energy and size.

PACS numbers: 03.50.De, 03.30.+p, 02.40.Pc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

As pointed out in a recent paper by Irvine and Bouwmeester [1], electromagnetic knots are
exact solutions of the classical Maxwell equations of electromagnetism in vacuum. They first
appeared in a paper by Rañada [2] in 1989. Rañada himself [3] has used these solutions as
the basic elements of a topological model of electromagnetism, which is locally equivalent to
Maxwell’s standard theory but implies furthermore some topological quantization conditions
with interesting physical meaning [4–8].

Electromagnetic knots are defined through two fundamental complex scalar fields (φ, θ)

whose level curves coincide with the magnetic and electric lines respectively, each one of
these lines being labelled by the constant value of the corresponding scalar. Both scalars are
assumed to have only one value at infinity, which is equivalent to compactifying the physical
three-space to the sphere S3. Moreover, the complex plane is compactified to the sphere S2

via stereographic projection. As a result of such compactifications, the scalars φ and θ can
be interpreted, at any time, as maps S3 → S2, which can be characterized by the value of the
Hopf index n [9]. It can be shown that the two scalar fields have the same Hopf index and
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that the magnetic and the electric lines are generically linked with the same Gauss linking
number �. If μ is the multiplicity of the level curves (i.e. the number of different magnetic or
electric lines that have the same label φ or θ ), then the Hopf index of both scalars is n = �μ2.
The Hopf index can thus be interpreted as a generalized linking number if we define a line
as a level curve with μ disjoint components. Note that there are some cases of curves in R3

in which the Gauss linking number is zero but the link is not topologically trivial. Examples
are the Whitehead link or the Borromean rings [10]. These cases could be included in the
model of electromagnetic knots provided the complex scalar fields can be found for these
configurations.

An important feature of the model is that the Faraday 2-form F = 1
2Fμν dxμ ∧ dxν and

its dual ∗F = 1
2

∗Fμν dxμ ∧ dxν are proportional to the two pull-backs of σ , the area 2-form
in S2, by φ and θ ,

F = −√
a φ∗σ, ∗F = c

√
a θ∗σ, (1)

where a is a constant introduced so that the magnetic and electric fields have correct dimensions
and c is the velocity of light in vacuum. In the international system of units, a can be expressed
as a pure number times the Planck constant h̄ times the light velocity c times the vacuum
permeability μ0. As a consequence of the definitions (1), the maps φ and θ are dual to one
another, ∗(φ∗σ) = −θ∗σ , where * is the Hodge or duality operator. This duality condition
guarantees that both F and ∗F obey the Maxwell equations in empty space without the need
of any other requirement.

The electromagnetic fields obtained in this way are called electromagnetic knots. They are
radiation fields as they verify the condition E · B = 0. It can be proved (see [5] for the details)
that any radiation field in vacuum is locally equivalent to an electromagnetic knot. Moreover,
because of the Darboux theorem, any electromagnetic field in empty space can be expressed
locally as the sum of two radiation fields. Consequently, a model of electromagnetism based
on these electromagnetic knots is locally equivalent to Maxwell standard theory. However,
its difference from the global point of view has interesting consequences, as are the following
topological quantizations. (i) The electric charge of any point particle must necessarily
be equal to an integer multiple of the fundamental value q0 = √

h̄cε0 (see [6]). (ii) The
electromagnetic helicity H = h̄c(NR − NL) is also quantized [5], where NR and NL are the
classical expressions of the number of right- and left-handed photons contained in the field
(i.e. NR − NL = ∫

d3k(āRaR − āLaL), aR(k), aL(k) being Fourier transforms of the vector
potential Aμ in classical theory, but creation and annihilation operator in the quantum version).
In fact, for any electromagnetic knot, n = NR − NL, which is a remarkable relation between
the Hopf index (i.e. the generalized linking number) of the classical field and the classical
case of the difference NR − NL. According to this relation, and taking into account the
results of [11], adding a right or left photon would imply to add or remove a crossing of the
field lines. (iii) The topology of the model also implies the quantization of the energy of
the electromagnetic field in a cavity [7]. (iv) The magnetic flux of a superconducting ring is
topologically quantized in the model of electromagnetic knots [8].

In this work we study a classical charged particle in a knotted electromagnetic field. We
find that the particles can accelerate to the light velocity. We first revise the construction
and some physical properties of the electromagnetic field built from the Hopf map between
the compactified three-space (the sphere S3) and the compactified complex plane (the sphere
S2). In particular, we pay attention to the electromagnetic energy density and how it evolves
with time and introduce a mean quadratic radius of the energy density. Then we consider the
relativistic motion of electrons in this electromagnetic field. We study the trajectories of the
electrons and their velocities, showing that they become ultrarelativistic for a wide range of
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the electromagnetic energy of the knot. Finally we give some conclusions and prospects of
future work.

2. The electromagnetic field of the Hopf fibration

A method to find explicitly some electromagnetic knots can be found in [12]. Let φ0(r), θ0(r),
be the two complex scalar fields such that they can be considered as maps φ0, θ0 : S3 → S2

after identifying the physical space R3 with S3 and the complex plane with S2. They have to
satisfy the following two conditions.

Condition 1. The level curves of φ0 must be orthogonal, at each point, to the level curves of
θ0, since we know that electromagnetic knots are radiation fields (E · B = 0).

Condition 2. The Hopf index of φ0 and of θ0 are equal, H(φ0) = H(θ0). This is necessary to
ensure that the condition E · B = 0 is maintained during time evolution.

Given φ0 and θ0 with these two conditions, we can construct the magnetic and electric
fields at t = 0 as

B(r, 0) =
√

a

2π i

∇φ0 × ∇φ̄0

(1 + φ̄0φ0)2
,

E(r, 0) =
√

ac

2π i

∇ θ̄0 × ∇θ0

(1 + θ̄0θ0)2
.

(2)

It is convenient to work with dimensionless coordinates in the mathematical spacetime S3 ×R,
and in S2. In order to do that, we define the dimensionless coordinates (X, Y,Z, T ), related
to the physical ones (x, y, z, t) (in the SI of units that we will use in this work) by

(X, Y,Z, T ) = 1

L0
(x, y, z, ct), (3)

and r2
/
L2

0 = (x2 +y2 +z2)
/
L2

0 = X2 +Y 2 +Z2 = R2, where L0 is a constant with dimensions
of length. Now, let us consider the Hopf map

φ0 = 2(X + iY )

2Z + i(R2 − 1)
, (4)

whose fibres have been used as a basis for a case of knotted entanglement in reaction–
diffusion models, in particular for a FitzHugh–Nagumo model [13]. We also consider the map
corresponding to the change (X, Y,Z) �→ (Y, Z,X) in (4):

θ0 = 2(Y + iZ)

2X + i(R2 − 1)
. (5)

Because of their construction, it is obvious that both maps (4) and (5) have the same Hopf
index. In fact, these maps have Hopf index n = 1 and their fibrations are mutually orthogonal
at each point. Consequently, we can build an electromagnetic knot from these maps. The
Cauchy data for the magnetic and electric fields are

B(r, 0) = 8
√

a

πL2
0(1 + R2)3

(
Y − XZ,−X − YZ,

−1 − Z2 + X2 + Y 2

2

)
,

E(r, 0) = 8
√

ac

πL2
0(1 + R2)3

(
1 + X2 − Y 2 − Z2

2
,−Z + XY, Y + XZ

)
.

(6)

Note that every time conditions 1 and 2 (see the beginning of this section) are necessary
to construct electromagnetic fields in the form of equation (1). For example, take φ0 as in
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equation (4) but θ0 = 0. The fibres of these maps are obviously orthogonal at t = 0 but they
have different Hopf indexes. When time evolves, the magnetic and electric fields will not be
orthogonal.

From (6), two vector potentials A and C can be computed, such that B = ∇ × A,
E = ∇ × C, with the results

A(r, 0) = 2
√

a

πL0(1 + R2)2
(Y,−X,−1),

C(r, 0) = 2
√

ac

πL0(1 + R2)2
(1,−Z, Y ).

(7)

The magnetic and electric helicities of this knot are defined to be

hm = 1

2μ0

∫
R3

A · B d3r,

he = ε0

2

∫
R3

C · E d3r,

(8)

where ε0 is the vacuum permittivity. Taking into account the Cauchy data (6) and the potentials
(7), the electromagnetic helicity yields

h = hm + he = a

2μ0
+

a

2μ0
= a

μ0
. (9)

To find the electromagnetic knot at any time from the Cauchy data (6), we use Fourier analysis.
The fields turn out to be [12]

B(r, t) =
√

a

πL2
0(A

2 + T 2)3
(QH1 + P H2),

E(r, t) =
√

ac

πL2
0(A

2 + T 2)3
(QH2 − P H1),

(10)

where the quantities A, P, Q are defined by

A = R2 − T 2 + 1

2
, P = T (T 2 − 3A2), Q = A(A2 − 3T 2), (11)

and the vectors H1 and H2 are

H1 =
(

Y + T − XZ,−X − (Y + T )Z,
−1 − Z2 + X2 + (Y + T )2

2

)
,

H2 =
(

1 + X2 + Z2 − (Y + T )2

2
,−Z + X(Y + T ), Y + T + XZ

)
.

(12)

This solution now fulfils E · B = 0 and E2 − c2B2 = 0 at any time. It is possible to obtain
directly the electromagnetic field (10) from the time-dependent expressions (1). In terms of
the magnetic and the electric fields, we have

B(r, t) =
√

a

2π i(1 + φφ̄)2
∇φ × ∇φ̄ =

√
a

2π ic(1 + θ θ̄)2

(
∂θ̄

∂t
∇θ − ∂θ

∂t
∇ θ̄

)
,

E(r, t) =
√

ac

2π i(1 + θ θ̄)2
∇ θ̄ × ∇θ =

√
a

2π i(1 + φφ̄)2

(
∂φ̄

∂t
∇φ − ∂φ

∂t
∇φ̄

)
,

(13)

where the time-dependent expressions of the maps φ and θ are (see [5])

φ = (AX − T Z) + i(AY + T (A − 1))

(AZ + T X) + i(A(A − 1) − T Y )
,

θ = (AY + T (A − 1)) + i(AZ + T X)

(AX − T Z) + i(A(A − 1) − T Y )
.

(14)
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Figure 1. Evolution of three energy density levels of the electromagnetic knot of the Hopf
fibration. From left to right and top to bottom, T = 0, T = 0.5, T = 1, T = 1.5.
Coordinates (X, Y,Z) are dimensionless and are related to the physical coordinates (x, y, z)

through (X, Y,Z) = (x, y, z)/L0. The levels correspond to values 0.1, 0.2 and 0.3 of the density
energy in a/(μ0L

4
0) units (see equation (15)). The density energy levels displayed are 0.1, 0.2 and

0.3 in increasing order of colour intensity. At T = 1.5, the levels 0.2 and 0.3 are not present.

Note that the level curves of both maps φ and θ remain linked with a Gauss linking number
equal to 1. The evolution of the curved lines of these maps gives the evolution of the force
lines of the magnetic and electric fields given by the expressions (13).

The energy density of the electromagnetic field (10) is given by,

U(r, t) = ε0E
2

2
+

B2

2μ0
= a

4π2μ0L
4
0

(1 + X2 + (Y + T )2 + Z2)2

(A2 + T 2)3
. (15)

The maximum of the energy density is located at X = Z = 0 during time evolution. The
function U is symmetric in the coordinates X and Z. In figure 1, we show some isosurfaces of
the energy density U for times T = 0, 0.5, 1, 1.5. The energy density levels represented are
0.1, 0.2 and 0.3 in a

/(
μ0L

4
0

)
units. It can be seen how the isosurfaces spread as the energy

density goes to zero. For time T = 1.5, the 0.3 and 0.2 levels have disappeared. Note that the
total electromagnetic energy of the knot

E =
∫

U d3r = 2a

μ0L0
(16)

remains constant. Note that the same helicity unit a also appears in the energy of the
electromagnetic knot. Relations between topology and energy of magnetic knots have been
studied recently in [14].
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At T = 0, the energy density has spherical symmetry and its maximum is located at the
origin. As time increases, the symmetry is broken and the maximum is located at X = Z = 0
and Y close to T. Approximately, the position of the maximum of the energy density can be
found up to T = 1 at X = Z = 0, Y = T (1 + 6T 2)/(2 + 6T 2).

The energy density of the knot extends to infinity, but we can define a mean quadratic
radius of the energy distribution as

〈r2〉 =
∫
(r − rmax)

2U d3r∫
U d3r

, (17)

where rmax is the position of the maximum of the distribution. At T = 0, the distribution has
spherical symmetry and the mean quadratic radius of the distribution is given by

√
〈r2〉 = L0.

The maximum has a value of the (dimensionless) energy density equal to 16/π2 and at a
distance equal to the mean quadratic value, the dimensionless energy density is 1/π2. This
means that, initially, more than 70% of the energy is localized inside a sphere of radius L0

centred at the origin. As time evolves the mean quadratic radius of the distribution spreads out
(its value at t = L0/c or T = 1 is about 1.1 L0) and the position of the centre is at (0, 7/8, 0).
Note that the distribution is not well characterized as a sphere as time evolves.

One can also compute the Poynting vector P of the electromagnetic field, obtaining

P =
∫

E × B
μ0

d3r =
(

0,
ac

2μ0L0
, 0

)
. (18)

As can be seen, it has a single contribution along the y-axis. This explains why the maximum
of the energy density moves along this axis for the electromagnetic knot studied in this paper.

3. Relativistic motion of charges in the electromagnetic knot of the Hopf fibration

Now we apply the electromagnetic knot studied in the previous section to the following
situation. Suppose that this knot has been created in certain region of the space, so we have
at t = 0 a knot initially centred at the origin, that moves with time along the y-axis as we
discussed in the previous section. Let us assume there are free electrons with negligible initial
velocities in units of the light velocity c. We consider the evolution of these electrons under
the electromagnetic knot field.

The velocity of the electrons increases by the action of the electromagnetic field, so we
will solve the relativistic equation for the motion of single electrons [15], considered as test
particles which do not affect the value of the electromagnetic field obtained from the Hopf
fibration. The equation to be considered is

dv
dt

= − e

m

√
1 − v2

c2

(
E + v × B − 1

c2
v(v · E)

)
, (19)

where e = 1.6 × 10−19 C is the electron charge, and m = 9.1 × 10−31 kg is its rest mass.
Using dimensionless quantities and expressions (10) for the electromagnetic knot of the Hopf
fibration, we find

dV
dT

= − e
√

a

πmcL0

√
1 − V 2

(A2 + T 2)3
· (QH2 − P H1 + V × (QH1 + P H2) − V(V · (QH2 − P H1)).

(20)

Different possible physical situations can be studied with equation (20) by changing the value
of the dimensionless term g = e

√
a/(πmcL0). For electrons, taking into account that the total
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Figure 2. Evolution of the position of electrons under the influence of the electromagnetic knot
of the Hopf fibration with g = 1. From left to right and top to bottom, T = 0.5, T = 1, T = 1.5.
The energy levels shown correspond to values 0.1, 0.2 and 0.3 of the density energy in a/(μ0L

4
0)

for the same times (see figure 1). The initial velocity of the electrons is V0 = 0. The electron
initial positions considered are given by R0 = (Ri, 0, 0), with Ri = ±0.1,±0.2, . . . ,±1, by
R0 = (0, Ri , 0), and by R0 = (0, 0, Ri). After T = 1.5 these electrons move almost freely. The
final values of the velocities at T = 1.5 run from Vmin = 0.5300 to Vmax = 0.8410 in units of the
light velocity c.

energy of the field is E = 2a/(μ0L0) and that the size of the knot is characterized initially by
L0, the term in equation (20) can be written as

g = e
√

a

πmcL0
≈ 0.15

√
E
L0

, (21)

where E is measured in Joules and L0 in metres.
In figure 2, the evolution of the position of electrons can be seen when g = 1. The

initial velocity of the electrons is V0 = 0. We have taken for these electrons initial positions
along the x-, y- and Z-axis. In each axis, the dimensionless position is ±0.1,±0.2, . . . ±1.
In the figure, the electron trajectories are plotted from T = 0 up to T = 0.5 (top left), up
to T = 1 (top right) and up to T = 1.5 (bottom). We also include some energy density
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Figure 3. Same situation as in figure 2 with a value g = 10. From left to right and top to bottom,
T = 0.5, T = 1, T = 1.5. The energy levels shown correspond to values 0.1, 0.2 and 0.3
of the density energy in a/(μ0L

4
0) for the same times (see figure 1). The initial velocity of the

electrons is V0 = 0. The electron initial positions considered are given by R0 = (Ri , 0, 0), with
Ri = ±0.1,±0.2, . . . ,±1, by R0 = (0, Ri , 0), and by R0 = (0, 0, Ri). The final values of the
velocities at T = 1.5 run from Vmin = 0.9684 to Vmax = 0.9942 in units of the light velocity c.

levels of the electromagnetic knot at the time considered, corresponding to values 0.1, 0.2
and 0.3 in a

/(
μ0L

4
0

)
units (see the caption of figure 1 for more details). By doing so, in

figure 2 we see not only the evolution of the position of some free electrons, but also the
region in which the interaction with the electromagnetic knot (whose centre moves along
the y-axis with a velocity close to c) is more important. This fact explains some features
of the behaviour of the electron trajectories. At the beginning, up to T = 0.5, the region where
the electrons are is influenced by the high values of the knot energy density, so that the electrons
are accelerated and their trajectories are curved by the influence of the electromagnetic force.
From T = 0.5 up to T = 1, the centre of the knot has moved along the y-axis and many
electrons are now in a region where the electromagnetic density is smaller. However, the
electromagnetic force is still important so that many electrons tend to follow the motion of the
centre of the knot (a small fraction of the electrons seem to be curved towards the opposite
direction). This is also the situation from T = 1 up to T = 1.5, during which electrons reach
high values of the velocity, in the range from Vmin = 0.5300 to Vmax = 0.8410 in units of
the light velocity c. After this time, the influence of the electromagnetic knot on the electron
trajectories is smaller, and they can be considered as almost free.
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Figure 4. Same situation as in figures 2 and 3 with a value g = 100. From left to right and
top to bottom, T = 0.5, T = 1, T = 1.5. The energy levels shown correspond to values 0.1,
0.2 and 0.3 of the density energy in a/(μ0L

4
0) for the same times. The initial velocity of the

electrons is V0 = 0. The electron initial positions considered are given by R0 = (Ri , 0, 0), with
Ri = ±0.1,±0.2, . . . ,±1, by R0 = (0, Ri , 0), and by R0 = (0, 0, Ri). The final values of the
velocities at T = 1.5 run from Vmin = 0.9870 to Vmax = 0.9999 in units of the light velocity c.

In figure 3, the evolution of the position of electrons is studied when g = 10. The
initial velocity of the electrons is V0 = 0, and the initial positions in each axis are given
by ±0.1,±0.2, . . . ± 1 in units of the knot size L0 as before. As in figure 2, the electron
trajectories are plotted in figure 3 from T = 0 up to T = 0.5 (top left), up to T = 1 (top right)
and up to T = 1.5 (bottom), and we include some energy density levels of the electromagnetic
knot at the time considered, corresponding to the values 0.1, 0.2 and 0.3 in a

/(
μ0L

4
0

)
units.

Up to T = 0.5, the electrons get higher acceleration and their trajectories are more curved by
the influence of the electromagnetic force than in the case of g = 1 (figure 2). From T = 0.5
up to T = 1, all the electrons tend to follow the motion of the centre of the knot, a situation
much clearer from T = 1 up to T = 1.5. The final velocities of these electrons are in the
range from Vmin = 0.9684 to Vmax = 0.9942 in units of the light velocity c.

9
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In figure 4, the evolution of the position of electrons can be seen when g = 100. The
initial velocity and initial position of the electrons are the same as in the cases g = 1 (figure 2)
and g = 10 (figure 3). As in previous cases, electron trajectories are plotted in figure 4 from
T = 0 up to T = 0.5 (top left), up to T = 1 (bottom) and up to T = 1.5 (top right), and
we include some energy density levels of the electromagnetic knot at the time considered,
corresponding to values 0.1, 0.2 and 0.3 in a

/(
μ0L

4
0

)
units. The global behaviour of

the electron trajectories is very similar to the case in which g = 10, but now the electrons
are even more accelerated and their trajectories are even more curved by the influence of the
electromagnetic force. All the electrons clearly tend to follow the motion of the centre of the
knot along the y-axis, with final velocities in the range from Vmin = 0.9870 to Vmax = 0.9999
in units of the light velocity c.

4. Conclusions

In this paper we have considered the classical relativistic motion of charged particles in a
knotted electromagnetic field. We have seen how to construct electromagnetic knots from
maps between the three-sphere and the two-sphere. In the particular case of the Hopf map,
whose fibres are mutually linked, we have written the expression for the electromagnetic field.
This is a solution of the Maxwell equations in vacuum, such that any pair of electric lines is a
link and any pair of magnetic lines is a link. We have considered some properties of this field,
in particular the electromagnetic energy density. We have seen that a major part of the energy
density of the knot is, at t = 0, localized into a sphere whose radius is the mean quadratic
radius of the energy density distribution. As time evolves, the spherical symmetry is broken
and the mean quadratic radius of the distributions spreads out.

We have considered the relativistic motion of electrons (considered as point particles)
in the electromagnetic field of the Hopf map. We have computed the trajectories of the
electrons starting with zero initial velocities, and we have seen that these electrons are strongly
accelerated by the electromagnetic force, becoming ultrarelativistic in a period of time that
depends on the knot size.

Finally we consider that a deeper understanding of the interaction between electromagnetic
knots and test particles could be useful to design experiments to produce knots in the
laboratory.
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[2] Rañada A F 1989 Lett. Math. Phys. 18 97–106
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